4.6 Article

Removal of ZnO Nanoparticles from Natural Waters by Coagulation-Flocculation Process: Influence of Surfactant Type on Aggregation, Dissolution and Colloidal Stability

Journal

SUSTAINABILITY
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/su11010017

Keywords

adsorption; aggregation; coagulation; dissolution; surfactants; wastewater treatment; ZnO NPs

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Education of Korea [22A20152613545]
  2. National Research Foundation of Korea [22A20152613545] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The zinc oxide nanoparticles (ZnO NPs) and surfactants that are widely used in commercial and industrial products lead to the likelihood of their co-occurrence in natural water, making it essential to investigate the effect of surfactants on the fate and mobility of ZnO NPs. The present study seeks to elucidate the effect of an anionic sodium dodecyl sulfate (SDS) and a nonionic nonylphenol ethoxylate (NPEO), on ZnO NPs adsorption, aggregation, dissolution, and removal by the coagulation process. The results indicate that the presence of SDS in ZnO NPs suspension significantly reduced the zeta-potential and hydrodynamic diameter (HDD), while the effect of NPEO was found not to be significant. The sorption of SDS and NPEO by ZnO NPs were fitted with Langmuir model, but the Freundlich isotherm was more suitable for SDS at pH 9.0. Moreover, the adsorption was strongly pH-dependent due to the formation of mono-bilayer patches onto the NPs. The SDS remarkably affect the dissolution and aggregation phenomena of ZnO NPs in natural waters as compared to NPEO. Finally, the coagulation results showed that the removal efficiency of ZnO, Zn2+ and the surfactant in synthetic and wastewaters at optimum ferric chloride (FC) dosage reached around 85-98% and 20-50%, respectively. Coagulation mechanism investigation demonstrated that the cooperation of charge neutralization and adsorptive micellar flocculation (AMF) might play an important role. In summary, this study may provide new insight into the environmental behavior of coexisting ZnO NPs and surfactants in water treatment processes, and it may facilitate their sustainable use in commercial products and processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available