4.8 Article

Engineering a conserved RNA regulatory protein repurposes its biological function in vivo

Journal

ELIFE
Volume 8, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.43788

Keywords

-

Categories

Funding

  1. National Institutes of Health [RGM122001A, R01NS100788]
  2. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [ZIAES050165] Funding Source: NIH RePORTER

Ask authors/readers for more resources

PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available