4.7 Article

Investigation into Cellular Glycolysis for the Mechanism Study of Energy Metabolism Disorder Triggered by Lipopolysaccharide

Journal

TOXINS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/toxins10110441

Keywords

lipopolysaccharide; energy metabolism; glycolysis; cancer

Ask authors/readers for more resources

Lipopolysaccharide (LPS) is the main virulence factor of Gram-negative bacteria, which can incite inflammation in tissues by inducing cells to secrete a variety of proinflammatory mediators, including cytokines, chemokines, interleukins, and prostaglandins. Herein, we chose LPS as an inducer to establish an inflammatory model of HeLa cells, and explored the effects of LPS on energy metabolism. We treated HeLa cells with different concentrations (0, 0.4, 1.0, 2.0, 4.0, and 6.0 g/mL) of LPS for 24 h, and explored its effects on intercellular adenosine triphosphate (ATP) levels, intercellular nitrous oxide (NO) content, mitochondrial functions, and enzyme activities related to energy metabolism. Furthermore, we used metabonomics to study the metabolites that participated in energy metabolism. We found a positive correlation between LPS concentrations and intracellular ATP levels. In addition, LPS increased intracellular NO production, altered mitochondrial functions, strengthened glycolytic enzyme activities, and changed metabolites related to energy metabolism. Hence, in this study, we showed that LPS can strengthen energy metabolism by enhancing glycolysis, which could be used as an early diagnostic biomarker or a novel therapeutic target for inflammation-associated cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available