4.7 Article

Assessment of Sentinel-2 MSI Spectral Band Reflectances for Estimating Fractional Vegetation Cover

Journal

REMOTE SENSING
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/rs10121927

Keywords

Sentinel-2 satellites; fractional vegetation cover; variable selection; random forest regression

Funding

  1. National Natural Science Foundation of China [41671332]
  2. National Key Research and Development Program of China [2016YFB0501404, 2016YFA0600103]

Ask authors/readers for more resources

Fractional vegetation cover (FVC) is an essential parameter for characterizing the land surface vegetation conditions and plays an important role in earth surface process simulations and global change studies. The Sentinel-2 missions carrying multi-spectral instrument (MSI) sensors with 13 multispectral bands are potentially useful for estimating FVC. However, the performance of these bands for FVC estimation is unclear. Therefore, the objective of this study was to assess the performance of Sentinel-2 MSI spectral band reflectances on FVC estimation. The samples, including the Sentinel-2 MSI canopy reflectances and corresponding FVC values, were simulated using the PROSPECT + SAIL radiative transfer model under different conditions, and random forest regression (RFR) method was then used to develop FVC estimation models and assess the performance of various band reflectances for FVC estimation. These models were finally evaluated using field survey data. The results indicate that the three most important bands of Sentinel-2 MSI data for FVC estimation are band 4 (Red), band 12 (SWIR2) and band 8a (NIR2). FVC estimation using these bands has a comparable accuracy (root mean square error (RMSE) = 0.085) with that using all bands (RMSE = 0.090). The results also demonstrate that band 12 had a better performance for FVC estimation than the green band (RMSE = 0.097). However, the newly added red-edge bands, with low scores in the RFR model, have little significance for improving FVC estimation accuracy compared with the Red, NIR2 and SWIR2 bands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available