4.7 Article

Effect of Chemical Composition Variant and Oxygen Plasma Treatments on the Wettability of PLGA Thin Films, Synthesized by Direct Copolycondensation

Journal

POLYMERS
Volume 10, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/polym10101132

Keywords

direct esterification; PLGA; high molecular weight; copolymerization; wettability; hydrophobicity

Ask authors/readers for more resources

The synthesis of high molecular weight poly (lactic-co-glycolic) acid (PLGA) copolymers via direct condensation copolymerization is itself a challenging task. Moreover, some of the characteristic properties of polylactide (PLA)-based biomaterials, such as brittleness, hydrophobicity, and longer degradation time, are not suitable for certain biomedical applications. However, such properties can be altered by the copolymerization of PLA with other biodegradable monomers, such as glycolic acid. A series of high molecular weight PLGAs were synthesized through the direct condensation copolymerization of lactic and glycolic acids, starting from 0 to 50 mol% of glycolic acid, and the wettability of its films was monitored as a function of the feed molar ratio. Copolymerization was performed in the presence of a bi-catalytic system using stannous chloride dihydrate and methanesulfonic acid (MSA). The viscosity average molecular weight of the resulting PLGA was in the range of 80k to 135k g/mol. The PLGA films were prepared using the solvent casting technique, and were treated with oxygen plasma for 2 min. The water contact angle of the PLGA films was determined before and after the oxygen plasma treatments, and it was observed that the wettability increased with an increase in the glycolic acid contents, however, the manifolds increased after 2 min of oxygen plasma treatments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available