4.7 Article

Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips

Journal

POLYMERS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/polym10111238

Keywords

organs-on-chips; labs-on-chips; additive manufacturing; laser materials processing; electroforming; mold fabrication; micro-injection molding; mass production; biomedical microdevices

Funding

  1. Karlsruhe Nano Micro Facility (KNMF), Helmholtz Research Infrastructure located at the Karlsruhe Institute of Technology (KIT)
  2. European Union's Horizon 2020 programme under the Marie Sklodowska-Curie grant [644971]

Ask authors/readers for more resources

The success of labs- and organs-on-chips as transformative technologies in the biomedical arena relies on our capacity of solving some current challenges related to their design, modeling, manufacturability, and usability. Among present needs for the industrial scalability and impact promotion of these bio-devices, their sustainable mass production constitutes a breakthrough for reaching the desired level of repeatability in systematic testing procedures based on labs- and organs-on-chips. The use of adequate biomaterials for cell-culture processes and the achievement of the multi-scale features required, for in vitro modeling the physiological interactions among cells, tissues, and organoids, which prove to be demanding requirements in terms of production. This study presents an innovative synergistic combination of technologies, including: laser stereolithography, laser material processing on micro-scale, electroforming, and micro-injection molding, which enables the rapid creation of multi-scale mold cavities for the industrial production of labs- and organs-on-chips using thermoplastics apt for in vitro testing. The procedure is validated by the design, rapid prototyping, mass production, and preliminary testing with human mesenchymal stem cells of a conceptual multi-organ-on-chip platform, which is conceived for future studies linked to modeling cell-to-cell communication, understanding cell-material interactions, and studying metastatic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available