4.7 Article

Coral-Like Yolk-Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes

Journal

NANO-MICRO LETTERS
Volume 11, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-018-0234-0

Keywords

Yolk-shell; Nickel oxide; Carbon composite; Anode materials; Spray pyrolysis; Lithium-ion batteries

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2018R1A4A1024691, NRF-2017M1A2A2087577, NRF-2018R1D1A3B07042514]
  2. National Research Foundation of Korea [2017M1A2A2087577, 21A20130000013] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

HighlightsCoral-like yolk-shell-structured nickel oxide/carbon composite microspheres were synthesized.Phase separation and polystyrene nanobead decomposition affected the structure formation.Coral-like yolk with interconnected mesopores provided excellent Li-ion storage properties. AbstractIn this study, coral-like yolk-shell-structured NiO/C composite microspheres (denoted as CYS-NiO/C) were prepared using spray pyrolysis. The unique yolk-shell structure was characterized, and the formation mechanism of the structure was proposed. Both the phase separation of the polyvinylpyrrolidone and polystyrene (PS) colloidal solution and the decomposition of the size-controlled PS nanobeads in the droplet played crucial roles in the formation of the unique coral-like yolk-shell structure. The CYS-NiO/C microspheres delivered a reversible discharge capacity of 991mAhg(-1) after 500 cycles at the current density of 1.0Ag(-1). The discharge capacity of the CYS-NiO/C microspheres after the 1000th cycle at the current density of 2.0Ag(-1) was 635mAhg(-1), and the capacity retention measured from the second cycle was 91%. The final discharge capacities of the CYS-NiO/C microspheres at the current densities of 0.5, 1.5, 3.0, 5.0, 7.0, and 10.0Ag(-1) were 753, 648, 560, 490, 440, and 389mAhg(-1), respectively. The synergetic effect of the coral-like yolk-shell structure with well-defined interconnected mesopores and highly conductive carbon resulted in the excellent Li+-ion storage properties of the CYS-NiO/C microspheres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available