4.7 Article

Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer

Journal

ACTA PHARMACOLOGICA SINICA
Volume 37, Issue 8, Pages 1110-1120

Publisher

NATURE PUBL GROUP
DOI: 10.1038/aps.2016.48

Keywords

doxorubicin; multidrug resistance; cell-penetrating peptide; poly(aspartic acid); intranuclear delivery; nanoparticles; human colon cancer HCT8/ADR cells

Funding

  1. 973 Program, China [2014CB931900, 2013CB932503]
  2. National Natural Science Foundation of China [81172996, 81373357, 81422048, 81402883, 81521005]

Ask authors/readers for more resources

Aim: Drug efflux-associated multidrug resistance (MDR) is a main obstacle to effective cancer chemotherapy. Large molecule drugs are not the substrates of P-glycoprotein, and can circumvent drug efflux and be retained inside cells. In this article we report a polymer-drug conjugate nanoparticulate system that can overcome MDR based on size-related exclusion effect. Methods: Doxorubicin was coupled with the triblock polymeric material cell-penetrating TAT-PEG-poly(aspartic acid). The amphiphilic macromolecules (termed TAT-PEG-Asp(8)-Dox) could self-assemble into nanoparticles (NPs) in water. The antitumor activity was evaluated in drug-resistant human colon cancer HCT8/ADR cells in vitro and in nude mice bearing HCT8/ADR tumor. Results: The self-assembling TAT-PEG-Asp(8)-Dox NPs were approximately 150 nm with a narrow particle size distribution, which not only increased the cellular uptake efficiency, but also bypassed P-glycoprotein-mediated drug efflux and improved the intracellular drug retention, thus yielding an enhanced efficacy for killing drug-resistant HCT8/ADR colon cancer cells in vitro. Importantly, the TAT-PEGA-sp(8)-Dox NPs enhanced the intranuclear disposition of drugs for grater inhibition of DNA/RNA biosynthesis. In nude mice bearing xenografted HCT8/ADR colon cancers, intravenous or peritumoral injection of TAT-PEG-Asp(8)-Dox NPs for 22 d effectively inhibited tumor growth. Conclusion: TAT-PEG-Asp(8)-Dox NPs can increase cellular drug uptake and intranuclear drug delivery and retain effective drug accumulation inside the cells, thus exhibiting enhanced anticancer activity toward the drug-resistant human colon cancer HCT8/ADR cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available