4.7 Article

A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion

Journal

FORESTS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/f9120744

Keywords

cross-trophic; edge effects; edge type; landscape matrix; management; neighbor effects; nonnative species; scale

Categories

Funding

  1. NSF Macrosystems Biology grants [DEB-1241932, DEB-1638702]

Ask authors/readers for more resources

The influences of human and physical factors on species invasions have been extensively examined by ecologists across many regions. However, how habitat fragmentation per se may affect forest insect and disease invasion has not been well studied, especially the related patterns over regional or subcontinental scales. Here, using national survey data on forest pest richness and fragmentation data across United States forest ecosystems, we examine how forest fragmentation and edge types (neighboring land cover) may affect pest richness at the county level. Our results show that habitat fragmentation and edge types both affected pest richness. In general, specialist insects and pathogens were more sensitive to fragmentation and edge types than generalists, while pathogens were much less sensitive to fragmentation and edge types than insect pests. Most importantly, the developed land edge type contributed the most to the richness of nonnative insects and diseases, whether measured by the combination of all pest species or by separate guilds or species groups (i.e., generalists vs. specialists, insects vs. pathogens). This observation may largely reflect anthropogenic effects, including propagule pressure associated with human activities. These results shed new insights into the patterns of forest pest invasions, and it may have significant implications for forest restoration and management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available