4.7 Article

Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-35984-2

Keywords

-

Funding

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20153030031710]
  3. Technology Innovation Program (or Industrial Strategic Technology Development Program) - Ministry of Trade, Industry & Energy (MOTIE, Korea) [10080293]

Ask authors/readers for more resources

In this study, a homogeneous and stable dispersion of graphene oxide (GO)/carbon nanotube (CNT) complexes (GCCs) was obtained by dispersing CNTs in an aqueous solution using GO in the absence of dispersing agents. Furthermore, carboxymethyl cellulose/GCC (CMC/GCC) nanocomposite films were prepared by a simple solution mixing-evaporation method. The dispersibility of the GCCs with different CNT contents was investigated by UV-Vis spectrophotometry. The morphological and crystalline structures of the samples were analyzed by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were conducted to identify the chemical composition of GO, CNTs, and GCCs. These results revealed that CNTs could be stably dispersed in water using GO. In addition, when CMC/GCC nanocomposite films were prepared by mixing CMC and GCCs, CNTs were uniformly dispersed in the CMC matrix. The tensile behavior was investigated using a universal testing machine. The tensile strength and Young's modulus of the CMC/GCC nanocomposite films were significantly improved by up to about 121% and 122%, respectively, compared to those of pure CMC because of uniform and strong pi-pi interfacial interactions between CNTs and CMC polymer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available