4.7 Article

Improved Kerogen Models for Determining Thermal Maturity and Hydrocarbon Potential of Shale

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-35560-8

Keywords

-

Funding

  1. Department of Energy's National Energy Technology Laboratory [FE0024297, FE0004000]
  2. National Science Foundation [NSF DEB-1342732]
  3. Division Of Environmental Biology [1342732] Funding Source: National Science Foundation

Ask authors/readers for more resources

Kerogen is the insoluble component of organic-rich shales that controls the type and amount of hydrocarbons generated in conventional and unconventional reservoirs. Significant progress has recently been made in developing structural models of kerogen. However, there is still a large gap in understanding the evolution of the molecular components of kerogen with thermal maturation and their hydrocarbon (HC) generative potential. Here, we determine the variations in different molecular fragments of kerogen from a Marcellus Shale maturity series (with VRo ranging from 0.8 to 3) using quantitative C-13 MultiCP/MAS NMR and MultiCP NMR/DD (dipolar dephasing). These molecular variations provide insight into the (1) evolution of the molecular structure of kerogen with increasing thermal maturity and, (2) the primary molecular contributors to HC generation. Our results also indicate that old model equations based on structural parameters of kerogen underestimate the thermal maturity and overestimate the HC generation potential of Marcellus Shale samples. This could primarily be due to the fact that the kerogen samples used to reconstruct old models were mostly derived from immature shales (VRo <1) acquired from different basins with varying depositional environments. We utilized the kerogen molecular parameters determined from the Marcellus maturity series samples to develop improved models for determining thermal maturity and HC potential of Marcellus Shale. The models generated in this study could also potentially be applied to other shales of similar maturity range and paleo-depositional environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available