4.6 Article

Fundamentals of Force-Controlled Friction Riveting: Part II-Joint Global Mechanical Performance and Energy Efficiency

Journal

MATERIALS
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/ma11122489

Keywords

friction; riveting; hybrid structures; joining; response surface

Funding

  1. Helmholtz Association, Germany [VH-NG-626]
  2. Austrian aviation program TAKE OFF
  3. BMVIT-Austrian Ministry for Transport, Innovation and Technology

Ask authors/readers for more resources

The present work investigates the correlation between energy efficiency and global mechanical performance of hybrid aluminum alloy AA2024 (polyetherimide joints), produced by force-controlled friction riveting. The combinations of parameters followed a central composite design of experiments. Joint formation was correlated with mechanical performance via a volumetric ratio (0.28-0.66 a.u.), with a proposed improvement yielding higher accuracy. Global mechanical performance and ultimate tensile force varied considerably across the range of parameters (1096-9668 N). An energy efficiency threshold was established at 90 J, until which, energy input displayed good linear correlations with volumetric ratio and mechanical performance (R-sq of 0.87 and 0.86, respectively). Additional energy did not significantly contribute toward increasing mechanical performance. Friction parameters (i.e., force and time) displayed the most significant contributions to mechanical performance (32.0% and 21.4%, respectively), given their effects on heat development. For the investigated ranges, forging parameters did not have a significant contribution. A correlation between friction parameters was established to maximize mechanical response while minimizing energy usage. The knowledge from Parts I and II of this investigation allows the production of friction riveted connections in an energy efficient manner and control optimization approach, introduced for the first time in friction riveting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available