4.4 Article

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

Journal

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Volume 9, Issue -, Pages 3039-3047

Publisher

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.9.282

Keywords

mechanoreceptor; Notonecta sensor; pressure sensor; Salvinia effect; superhydrophobic surfaces

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [GRK1572]
  2. Federal Ministry for Education, Germany (BMBF) [03V0752]
  3. PSI [20160644]

Ask authors/readers for more resources

In technical systems, static pressure and pressure changes are usually measured with piezoelectric materials or solid membranes. In this paper, we suggest a new biomimetic principle based on thin air layers that can be used to measure underwater pressure changes. Submerged backswimmers (Notonecta sp.) are well known for their ability to retain air layers on the surface of their forewings (hemelytra). While analyzing the hemelytra of Notonecta, we found that the air layer on the hemelytra, in combination with various types of mechanosensitive hairs (clubs and pins), most likely serve a sensory function. We suggest that this predatory aquatic insect can detect pressure changes and water movements by sensing volume changes of the air layer under water. In the present study, we used a variety of microscopy techniques to investigate the fine structure of the hemelytra. Furthermore, we provide a biomimetic proof of principle to validate our hypothesis. The suggested sensory principle has never been documented before and is not only of interest for sensory biologists but can also be used for the development of highly sensitive underwater acoustic or seismographic sensory systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available