4.8 Article

Fast Na-Ion Intercalation in Zinc Vanadate for High-Performance Na-Ion Hybrid Capacitor

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201802800

Keywords

energy density; hybrid capacitors; intercalation pseudocapacitance; power density; sodium storage

Funding

  1. ETH Zurich [ETH-13 16-1]
  2. China Scholarship Council
  3. Swiss National Science Foundation
  4. Liebig Fellowship of the German Chemical Industry Fund

Ask authors/readers for more resources

Na-ion hybrid capacitors are an emerging class of inexpensive and sustainable devices that combine the high energy of batteries with the high power of capacitors. However, their development is strongly impeded by a limited choice of electrode materials that display good electrochemical kinetics and long-term cyclability. Here, a reduced graphene oxide-Zn0.25V2O5 center dot nH(2)O nanobelt composite is introduced as a high power anode for Na-ion batteries and Na-ion hybrid capacitors. The composite material possesses fast Na-ion intercalation kinetics, high electronic conductivity, and small volume change during Na-ion storage, which lead to outstanding rate capability and cycling stability in half-cell tests. Pairing it with a hard salt-templated, highly ordered mesoporous carbon as a high-performance capacitive cathode results in a Na-ion hybrid capacitor, which delivers a high energy density (88.7 Wh kg(-1) at 223 W kg(-1)), a high power density (12552 W kg(-1) with 13.2 Wh kg(-1) retained), and an impressive cycling performance (31.7 Wh kg(-1) (i.e., 87%) retained after 2000 cycles at 1 A g(-1)). This work explores zinc vanadate, a typical example of a layered metal vanadate, as an intercalation anode material with high pseudocapacitance for Na-ion hybrid capacitors, which may open a promising direction for high-rate Na-ion storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available