4.8 Article

Epistasis studies reveal redundancy among calcium-dependent protein kinases in motility and invasion of malaria parasites

Journal

NATURE COMMUNICATIONS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-06733-w

Keywords

-

Funding

  1. Swiss National Science Foundation [BSSGI0_155852]
  2. SystemsX.ch grant [51TRPO_151032]
  3. European Research Council under the European Union's Horizon 2020 Research and Innovation program [695596]
  4. Wellcome Trust [Wellcome Trust (098051]
  5. Wellcome grant [106240/Z/14/Z]
  6. Investigator Award from the Wellcome [100993/Z/13/Z]
  7. MRC [G1000779] Funding Source: UKRI

Ask authors/readers for more resources

In malaria parasites, evolution of parasitism has been linked to functional optimisation. Despite this optimisation, most members of a calcium-dependent protein kinase (CDPK) family show genetic redundancy during erythrocytic proliferation. To identify relationships between phospho-signalling pathways, we here screen 294 genetic interactions among protein kinases in Plasmodium berghei. This reveals a synthetic negative interaction between a hypomorphic allele of the protein kinase G (PKG) and CDPK4 to control erythrocyte invasion which is conserved in P. falciparum. CDPK4 becomes critical when PKG-dependent calcium signals are attenuated to phosphorylate proteins important for the stability of the inner membrane complex, which serves as an anchor for the acto-myosin motor required for motility and invasion. Finally, we show that multiple kinases functionally complement CDPK4 during erythrocytic proliferation and transmission to the mosquito. This study reveals how CDPKs are wired within a stage-transcending signalling network to control motility and host cell invasion in malaria parasites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available