4.5 Article

Colloids, flocculation and carbon capture - a comprehensive plant-wide model

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 79, Issue 1, Pages 15-25

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2018.454

Keywords

biosorption; contact stabilization; organic substrate; oxidation; process modelling

Ask authors/readers for more resources

The implementation of carbon capture technologies such as high-rate activated sludge (HRAS) systems are gaining interests in water resource and recovery facilities (WRRFs) to minimize carbon oxidation and maximize organic carbon recovery and methane potential through biosorption of biodegradable organics into the biomass. Existing activated sludge models were developed to describe chemical oxygen demand (COD) removal in activated sludge systems operating at long solids retention times (SRT) (i.e. 3 days or longer) and fail to simulate the biological reactions at low SRT systems. A new model is developed to describe colloidal material removal and extracellular polymeric substance (EPS) generation, flocculation, and intracellular storage with the objective of extending the range of whole plant models to very short SRT systems. In this study, the model is tested against A-stage (adsorption) pilot reactor performance data and proved to match the COD and colloids removal at low SRT. The model was also tested on longer SRT systems where effluents do not contain much residual colloids, and digestion where colloids from decay processes are present.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available