4.4 Article

Genome-wide transcriptional response of the Arctic bacterium Pseudoalteromonas sp A2 to oxidative stress induced by hydrogen peroxide

Journal

ACTA OCEANOLOGICA SINICA
Volume 35, Issue 12, Pages 73-80

Publisher

SPRINGER
DOI: 10.1007/s13131-016-0892-z

Keywords

Arctic; Pseudoalteromonas; oxidative stress; RNA-Seq

Categories

Funding

  1. National Natural Science Foundation of China [41176174]
  2. Public Science and Technology Funds for Ocean Projects [201205020-5]

Ask authors/readers for more resources

Oxidative stress is one of the major challenges faced by Arctic marine bacteria due to the high oxygen concentration of seawater, low temperatures and UV radiations. Transcriptome sequencing was performed to obtain the key functional genes involved in the adaptation to oxidative stress induced by hydrogen peroxide in the Arctic bacterium Pseudoalteromonas sp. A2. Exposure to 1 mmol/L H2O2 resulted in large alterations of the transcriptome profile, including significant up-regulation of 109 genes and significant down-regulation of 174 genes. COG functional classification revealed that among the significantly regulated genes with known function categories, more genes belonging to posttranslational modification, protein turnover and chaperones were significantly up-regulated, and more genes affiliated with chaperones and amino acid transport and metabolism were significantly down-regulated. It was notable that the expressions of eighteen genes affiliated with flagella and four genes affiliated with heat shock proteins were significantly up-regulated. Meanwhile, the expression of nine genes belonging to cytochrome and cytochrome oxidase, and five genes belonging to TonB-dependent receptor, were significantly down-regulated. Among the eighteen genes with antioxidant activity categorized by GO analysis, the expression of one gene was significantly up-regulated; however, the expressions of two genes were significantly down-regulated. Briefly, RNA-Seq indicated that, except for the classical anti-oxidative genes and stress proteins, genes affiliated with flagella and function unknown played important roles in coping with oxidative stress in Pseudoalteromonas sp. A2. This overall survey of transcriptome and oxidative stress-relevant genes can contribute to understand the adaptive mechanism of Arctic bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available