4.2 Article

Regulatory effects of dermal papillary pluripotent stem cells on polarization of macrophages from M1 to M2 phenotype in vitro

Journal

TRANSPLANT IMMUNOLOGY
Volume 52, Issue -, Pages 57-67

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.trim.2018.11.003

Keywords

Spinal cord injury; Macrophage; Polarization; Dermal papilla cell; Mesenchymal stem cell

Funding

  1. Bethune program for Young Teachers from Jilin University [2015430]
  2. Outstanding Young Teacher's Training Program from Jilin University [419080500576]

Ask authors/readers for more resources

The M1:M2 macrophage ratio is important for spinal cord injury (SCI) repair. Bone marrow mesenchymal stem cells (BMSCs) can alter macrophage activation, promoting M1 to M2 macrophage conversion and SCI repair; however, clinical BMSC applications have limitations. Previously, we found DPCs to be superior to BMSCs in promoting tissue repair after SCI, which we hypothesized to be mediated by M1 to M2 macrophage conversion. We investigated the regulatory effect of DPCs on M1/M2 macrophage polarization. Dermal papilla cells (DPCs) were isolated from rat vibrissae and characterized. Bone marrow-derived macrophages (BMDMs) were isolated and identified based on specific marker expression, and stimulated to differentiate into M1 macrophages with GM-CSF, IFN-gamma, and LPS. These cells were co-cultured with DPCs to evaluate the effect on macrophage differentiation. DPCs expressed dermal papillae-specific markers, including ALP and Sox2, had MSC-expression patterns like those of BMSCs, and were capable of multi-differentiation. BMDMs expressed ANAE and CD68. Three days after induction, differentiated cells exhibited morphology typical of M1-like macrophages and expressed the macrophage marker CD68 and the Ml macrophage markers iNOS, but lacked expression of the M2 macrophage marker CD206. Co-culture with DPCs resulted in a shift to anti-inflammatory M2-like macrophage differentiation, characterized by morphological changes typical of M2 macrophages, downregulation of the characteristic cytokine TNF-alpha and the proportion of iNOS(+) cells, and upregulation of the characteristic cytokine IL-10 and the cell-surface marker CD206. The number of CD206-expressing M2 macrophages also increased. These findings demonstrate that DPCs reprogram macrophages to an anti-inflammatory M2 phenotype, which could improve adverse inflammatory microenvironments and promote tissue repair. Thus, DPCs may be an interesting alternative cell source and merit further investigation in applications for SCI therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available