4.6 Article

Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies

Journal

SOLAR ENERGY
Volume 176, Issue -, Pages 380-394

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2018.10.049

Keywords

DC-DC converter; MPPT converter; HF link; SiC power MOSFET; SiC Schottky diode; PV supply

Categories

Funding

  1. Scientific Research Projects Office of Hacettepe University [BAP-013A602002]

Ask authors/readers for more resources

A 20 kW, 20 kHz high frequency (HF) link maximum power point tracking (MPPT) converter for a grid-connected PV supply, based on all silicon carbide (SiC) power semiconductors, is presented. In the developed converter, SiC power MOSFETs are used in the low-voltage PV panel side and SiC Schottky diodes on the high-voltage DC output, in order to maximize the power conversion efficiency and the power density. Operating principles of the resulting dual H-bridge MPPT converter and the practical aspects of the converter design and its circuit layout, are described in detail. The implemented converter performance is compared with that of a classical Si-IGBT and hybrid-IGBT based MPPT converter in terms of efficiency. This configuration can compete with the non-isolated MPPT converter topologies, such as the boost converter commonly used in grid-connected PV systems, since it allows the possibility of using a conventional two-level, three-phase grid-connected inverter. This is due to the enhanced common-mode EMI performance as compared to non-isolated MPPT topologies, resulting in a competitive high efficiency PV converter design with galvanic isolation. It has been shown that the converter size can be shrinked up to a power density of 1.6 kW/lt, with a DC-DC converter full-load efficiency of 98%. The resulting compact and highly efficient SiC power MOSFET based HF link MPPT converter is suggested to be a part of grid-connected, multi-string PV supplies with simple inverter topologies in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available