4.6 Article

Nonlinear piezoelectric vibration energy harvester with frequency-tuned impacting resonators for improving broadband performance at low frequencies

Journal

SMART MATERIALS AND STRUCTURES
Volume 28, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-665X/aaf358

Keywords

piezoelectric energy harvesting; frequency up-conversion; contact; commensurate frequencies; finite element modeling; nonlinear dynamics; broadband responses

Funding

  1. Swiss Sciex-NMSCH fellowship [12.042]
  2. Research Council of Lithuania [S-MIP-17-89]

Ask authors/readers for more resources

The paper reports on a nonlinear frequency up-converting vibration energy harvester with enhanced broadband performance below 50 Hz, which is attained by leveraging vibro-impact interaction between two high-frequency piezoelectric generators and two low-frequency resonators with commensurate natural frequencies in the 2:1 ratio. Finite element model was implemented to assess the proposed concept by treating the harvester as a vibro-impact coupled piezoelectric-circuit system. The model accommodates multiple mechanical contact pairs defined by nonlinear dissipative Hunt-Crossley contact force formulation. Effective design principles were applied to maximize power output including near-optimal positioning of the neutral plane in the generators and rational adjustment of response settling time. The fabricated proof-ofconcept device was tested in different clearance configurations and under varying harmonic excitation conditions to reveal rich nonlinear dynamics behavior. The measured hardening-type power frequency responses were examined to gain better insight into nonlinear resonance characteristics (instability jumps, frequency hysteresis, etc), which determine effectiveness of micro-power generation. It was demonstrated that the proposed dual-resonator energy harvester favorably harnesses nonlinear resonance amplification to deliver larger average power output (up to 37 mu W) and useable bandwidth (up to 9.5 Hz) in comparison to the conventional single-resonator counterparts (delivering up to 26 mu W and up to 7 Hz, respectively). The maximum normalized power density of the device is 41 mu W cm(-3) g(-2), while volume figure of merit and 3 dB or 1 dB bandwidth-based figures of merit reach 0.18%, 11 mu W cm(-3) g(-2) and 1.5%, respectively. The latter value indicates superior broadband performance of the device. Adoption of mean performance index and coefficient of variation as complementary figures of merit proved to be valuable in identifying device configuration that yields the most effective and stable broadband operation in a targeted frequency range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available