4.7 Article

Grain growth and grain translation in crystals

Journal

ACTA MATERIALIA
Volume 120, Issue -, Pages 264-272

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.08.056

Keywords

Grain boundary motion; Grain growth; Phase field; Coupling

Funding

  1. National Science Foundation [DMR 1105409, 1507033]
  2. National Science Council of Taiwan [NSC102-2112-M-007-007-MY3]
  3. National Center for Theoretical Sciences, Taiwan
  4. Direct For Mathematical & Physical Scien [1507033] Funding Source: National Science Foundation
  5. Division Of Materials Research [1507033] Funding Source: National Science Foundation

Ask authors/readers for more resources

Grain growth is generally driven to minimize the overall grain boundary energy. However, for low-angle grain boundaries the requirement that lattice planes be continuous across the boundary gives rise to a coupling between the normal motion of the grain boundary and the tangential motion of the lattice. We show through phase-field crystal simulations this coupling in polycrystalline systems can give rise to a rigid body translation of the lattice as a grain shrinks. The process is mediated by significant climb of the dislocations in the boundary and dislocation reactions at the trijunctions. Thus the grain growth process is coupled to vacancy diffusion processes as well as the dynamics of grain trijunctions. Moreover, grain shrinkage can cease because of dislocation behavior near the trijunction, illustrating that this coupling Can have an influence on the grain growth process in polycrystals. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available