4.6 Article

Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm

Journal

SENSORS
Volume 18, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/s18124318

Keywords

deep learning; autoencoder-decoder; Resonance-based Sparsity Signal Decomposition; target recognition; ship-radiated noise; feature-extraction; feature-separation

Funding

  1. National Natural Science Foundation of China [61471308, 61571377, 61771412]
  2. Fundamental Research Funds for the Central Universities [20720180068]

Ask authors/readers for more resources

For the purpose of improving the accuracy of underwater acoustic target recognition with only a small number of labeled data, we proposed a novel recognition method, including 4 steps: pre-processing, pre-training, fine-tuning and recognition. The 4 steps can be explained as follows: (1) Pre-processing with Resonance-based Sparsity Signal Decomposition (RSSD): RSSD was firstly utilized to extract high-resonance components from ship-radiated noise. The high-resonance components contain the major information for target recognition. (2) Pre-training with unsupervised feature-extraction: we proposed a one-dimensional convolution autoencoder-decoder model and then we pre-trained the model to extract features from the high-resonance components. (3) Fine-tuning with supervised feature-separation: a supervised feature-separation algorithm was proposed to fine-tune the model and separate the extracted features. (4) Recognition: classifiers were trained to recognize the separated features and complete the recognition mission. The unsupervised pre-training autoencoder-decoder can make good use of a large number of unlabeled data, so that only a small number of labeled data are required in the following supervised fine-tuning and recognition, which is quite effective when it is difficult to collect enough labeled data. The recognition experiments were all conducted on ship-radiated noise data recorded using a sensory hydrophone. By combining the 4 steps above, the proposed recognition method can achieve recognition accuracy of 93.28%, which sufficiently surpasses other traditional state-of-art feature-extraction methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available