4.6 Article

Comparison of Different Feature Sets for TLS Point Cloud Classification

Journal

SENSORS
Volume 18, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/s18124206

Keywords

terrestrial laser scanning; point cloud; classification; intensity; feature set; supervoxel; random forest

Funding

  1. Natural Science Foundation of China (NSFC) [41671449]

Ask authors/readers for more resources

Point cloud classification is an essential requirement for effectively utilizing point cloud data acquired by Terrestrial laser scanning (TLS). Neighborhood selection, feature selection and extraction, and classification of points based on the respective features constitute the commonly used workflow of point cloud classification. Feature selection and extraction has been the focus of many studies, and the choice of different features has had a great impact on classification results. In previous studies, geometric features were widely used for TLS point cloud classification, and only a few studies investigated the potential of both intensity and color on classification using TLS point cloud. In this paper, the geometric features, color features, and intensity features were extracted based on a supervoxel neighborhood. In addition, the original intensity was also corrected for range effect, which is why the corrected intensity features were also extracted. The different combinations of these features were tested on four real-world data sets. Experimental results demonstrate that both color and intensity features can complement the geometric features to help improve the classification results. Furthermore, the combination of geometric features, color features, and corrected intensity features together achieves the highest accuracy in our test.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available