4.3 Review

Roles of the exon junction complex components in the central nervous system: a mini review

Journal

REVIEWS IN THE NEUROSCIENCES
Volume 29, Issue 8, Pages 817-824

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/revneuro-2017-0113

Keywords

development; elF4A3; Magoh; MLN51; nervous system; Rbm8a

Categories

Funding

  1. National Science Centre Poland [2015/17/B/NZ4/02410]
  2. Nencki Institute of Experimental Biology of the Polish Academy of Sciences

Ask authors/readers for more resources

The exon junction complex (EJC) consists of four core proteins: Magoh, RNA-binding motif 8A (Rbm8a, also known as Y14), eukaryotic initiation factor 4A3 (eIF4A3, also known as DDX48), and metastatic lymph node 51 (MLN51, also known as Casc3 or Barentsz), which are involved in the regulation of many processes occurring between gene transcription and protein translation. Its main role is to assemble into spliceosomes at the exon-exon junction of mRNA during splicing. It is, therefore, a range of functions concerning post-splicing events such as mRNA translocation, translation, and nonsense-mediated mRNA decay (NMD). Apart from this, proteins of the EJC control the splicing of specific pre-mRNAs, for example, splicing of the mapk transcript. Recent studies support essential functions of EJC proteins in oocytes and, after fertilization, in all stages of zygote development, as well as the growth of the embryo, including the development of the nervous system. During the development of the central nervous system (CNS), the EJC controls mitosis, regulating both symmetric and asymmetric cell divisions. Reduced levels of EJC components cause microcephaly. In the adult brain, Y14 and eIF4A3 appear to be involved in synaptic plasticity and in learning and memory. In this review, we focus on the involvement of EJC components in brain development and its functioning under normal conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available