4.8 Article

Design and in vitro realization of carbon-conserving photorespiration

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1812605115

Keywords

carbon fixation; computational modeling; kinetic modeling; metabolic engineering; enzyme engineering

Funding

  1. Max Planck Society
  2. European Union's Horizon 2020 FET Programme Grant [686330]
  3. Alternative Energy Research Initiative at the Weizmann Institute of Science
  4. Azrieli Foundation

Ask authors/readers for more resources

Photorespiration recycles ribulose-1,5-bisphosphate carboxylase/oxygenase ( Rubisco) oxygenation product, 2-phosphoglycolate, back into the Calvin Cycle. Natural photorespiration, however, limits agricultural productivity by dissipating energy and releasing CO2. Several photorespiration bypasses have been previously suggested but were limited to existing enzymes and pathways that release CO2. Here, we harness the power of enzyme and metabolic engineering to establish synthetic routes that bypass photorespiration without CO2 release. By defining specific reaction rules, we systematically identified promising routes that assimilate 2-phosphoglycolate into the Calvin Cycle without carbon loss. We further developed a kinetic-stoichiometric model that indicates that the identified synthetic shunts could potentially enhance carbon fixation rate across the physiological range of irradiation and CO2, even if most of their enzymes operate at a tenth of Rubisco's maximal carboxylation activity. Glycolate reduction to glycolaldehyde is essential for several of the synthetic shunts but is not known to occur naturally. We, therefore, used computational design and directed evolution to establish this activity in two sequential reactions. An acetyl-CoA synthetase was engineered for higher stability and glycolyl-CoA synthesis. A propionyl-CoA reductase was engineered for higher selectivity for glycolyl-CoA and for use of NADPH over NAD(+), thereby favoring reduction over oxidation. The engineered glycolate reduction module was then combined with downstream condensation and assimilation of glycolaldehyde to ribulose 1,5-bisphosphate, thus providing proof of principle for a carbonconserving photorespiration pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available