4.2 Article

Choosing a sensible cut-off point: assessing the impact of uncertainty in a social network on the performance of NBDA

Journal

PRIMATES
Volume 60, Issue 3, Pages 307-315

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s10329-018-0693-4

Keywords

Network-based diffusion analysis; NBDA; Social network; Uncertainty; Social learning

Categories

Ask authors/readers for more resources

Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals' network connections. Most studies on animal populations, however, lack a complete record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain threshold for the inclusionof individuals. It simulates a social learning process through a population and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific to their data set, that maximizes power to reliably quantify social learning in their study population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available