4.7 Article

WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis

Journal

PLANT MOLECULAR BIOLOGY
Volume 99, Issue 1-2, Pages 149-159

Publisher

SPRINGER
DOI: 10.1007/s11103-018-0809-7

Keywords

Arabidopsis; Cd tolerance; Glutathione; Phytochelatins; WRKY12

Funding

  1. National Natural Science Foundation of China [31770284, 31571250]
  2. Fundamental Research Funds for the Central Universities [JZ2018HGTB0248]

Ask authors/readers for more resources

The WRKY transcription factor WRKY12 negatively regulates Cd tolerance in Arabidopsis via the glutathione-dependent phytochelatin synthesis pathway by directly targeting GSH1 and indirectly repressing phytochelatin synthesis-related gene expression. Cadmium (Cd) is a widespread pollutant toxic to plants. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway plays key roles in Cd detoxification. However, its regulatory mechanism remains largely unknown. Here, we showed a previously unknown function of the WRKY transcription factor WRKY12 in the regulation of Cd tolerance by repressing the expression of PC synthesis-related genes. The expression of WRKY12 was inhibited by Cd stress. Enhanced Cd tolerance was observed in the WRKY12 loss-of-function mutants, whereas increased Cd sensitivity was found in the WRKY12-overexpressing plants. Overexpression and loss-of-function of WRKY12 were associated respectively with increased and decreased Cd accumulation by repressing or releasing the expression of the genes involved in the PC synthesis pathway. Transient expression assay showed that WRKY12 repressed the expression of GSH1, GSH2, PCS1, and PCS2. Further analysis indicated that WRKY12 could directly bind to the W-box of the promoter in GSH1 but not in GSH2, PCS1, and PCS2 in vivo. Together, our results suggest that WRKY12 directly targets GSH1 and indirectly represses PC synthesis-related gene expression to negatively regulate Cd accumulation and tolerance in Arabidopsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available