4.7 Article

Genetic Relationship Between Phytochromes and OsELF3-1 Reveals the Mode of Regulation for the Suppression of Phytochrome Signaling in Rice

Journal

PLANT AND CELL PHYSIOLOGY
Volume 60, Issue 3, Pages 549-561

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcy225

Keywords

ELF3; Flowering; Gene duplication; Light signaling; Phytochromes; Rice (Oryza sativa L.)

Funding

  1. Ministry of Agriculture, Forestry and Fisheries of Japan [GPN-0001, IVG-3005]
  2. Japan Society for the Promotion of Science (JSPS) [23687007]
  3. Grants-in-Aid for Scientific Research [23687007] Funding Source: KAKEN

Ask authors/readers for more resources

EARLY FLOWERING3 (ELF3) functions as a night-time repressor required for sustaining circadian rhythms and co-ordinating growth and development in various plant species. The rice genome carries two ELF3 homologs, namely OsELF3-1 and OsELF3-2. Previous studies have suggested that OsELF3-1 has a predominant role in controlling rice photoperiodic flowering, while also contributing to the transcriptional regulation of rice floral regulators expressed in the morning. However, OsELF3-1 has not been functionally characterized. Here, we observed that the oself3-1 mutation suppresses the photoperiod-insensitive early flowering of photoperiod sensitivity5 (se5), which is a chromophore-deficient rice mutant. Detailed analyses of the se5oself3-1 double mutant revealed the recovery of the phytochrome-dependent expression of Grain number, plant height, and heading date7 (Ghd7), a floral repressor, and Light-harvesting chlorophyll a/b binding protein (Lhcb) genes. Although the oself3-1 mutation recovered Ghd7 expression in the se5 background, there was a lack of Ghd7 expression in the phyAphyBphyC triple mutant background. These observations suggest that OsELF3-1 represses Ghd7 expression by inhibiting the phytochrome signaling pathway. Comparative genome analyses indicated that OsELF3-1 was produced via gene duplication events in Oryza species, and that it is expressed throughout the day. A comparison between the oself3-1 mutant and transgenic rice lines in which OsELF3-1 and OsELF3-2 are simultaneously silenced uncovered a role for OsELF3-1 in addition to the canonical ELF3 function as an evolutionarily conserved role for a night-time repressor that regulates the rice circadian clock. Our study confirmed that an ELF3 paralog, OsELF3-1, had a unique role involving the suppression of phytochrome signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available