4.7 Article

Knockdown of STAYGREEN in Perennial Ryegrass (Lolium perenne L.) Leads to Transcriptomic Alterations Related to Suppressed Leaf Senescence and Improved Forage Quality

Journal

PLANT AND CELL PHYSIOLOGY
Volume 60, Issue 1, Pages 202-212

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcy203

Keywords

Chlorophyll catabolism; Leaf senescence; Perennial ryegrass; Protein content; Transcriptome

Funding

  1. National Science Foundation of China [31572455, 31772659]
  2. China Postdoctoral Science Foundation [2017M621764]

Ask authors/readers for more resources

Chl breakdown is a hallmark of leaf senescence. Protein degradation is tightly associated with accelerated Chl catabolism during leaf senescence. Therefore, blocking or reducing Chl breakdown and thereby improving Chl and leaf protein contents is desirable for agronomic improvement in perennial forage grasses. Perennial ryegrass (Lolium perenne L.) is one principle cool-season forage grass in temperate areas throughout the world. In this study, the perennial ryegrass STAY-GREEN gene (LpSGR) was cloned and characterized. LpSGR was highly expressed in developmentally or dark-induced senescent leaves. LpSGR was subcellularly localized in chloroplast and interacted with the other Chl catabolic enzymes. RNA interference (RNAi) of LpSGR in perennial ryegrass blocked the degradation of Chl, resulting in increased Chl content and photochemical efficiency in senescent leaves. The RNAi transgenic plants had significantly improved forage quality, with up to 46.1% increased protein content in the harvested biomass. Transcriptome comparison revealed that suppression of LpSGR led to multiple alterations in metabolic pathways in locations inside the chloroplast. Most transcription factors of senescence-associated hormonal signaling pathways (e.g. ABA, ethylene and jasmonic acid) had decreased expression levels in the RNAi plants. These results provided a foundation for the further study on the regulatory mechanism of LpSGR in perennial ryegrass for the purpose of forage improvement with delayed leaf senescence and higher forage quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available