4.7 Article

Brittle Culm 1 Encodes a COBRA-Like Protein Involved in Secondary Cell Wall Cellulose Biosynthesis in Sorghum

Journal

PLANT AND CELL PHYSIOLOGY
Volume 60, Issue 4, Pages 788-801

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcy246

Keywords

Biofuel; Cell wall; Cellulose synthesis; COBRA-like; Sorghum

Funding

  1. National Key Research and Development Program of China [2018YFD1000706]

Ask authors/readers for more resources

Plant mechanical strength contributes to lodging resistance and grain yield, making it an agronomically important trait in sorghum (Sorghum bicolor). In this study, we isolated the brittle culm 1 (bc1) mutant and identified SbBC1 through map-based cloning. SbBC1, a homolog of rice OsBC1 and Arabidopsis thaliana AtCOBL4, encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchored protein. A single-nucleotide mutation in SbBC1 led to reduced mechanical strength, decreased cellulose content, and increased lignin content without obviously altering plant morphology. Transmission electron microscopy revealed reduced cell wall thickness in sclerenchyma cells of the bc1 mutant. SbBC1 is primarily expressed in developing sclerenchyma cells and vascular bundles in sorghum. RNA-seq analysis further suggested a possible mechanism by which SbBC1 mediates cellulose biosynthesis and cell wall remodeling. Our results demonstrate that SbBC1 participates in the biosynthesis of cellulose in the secondary cell wall and affects the mechanical strength of sorghum plants, providing additional genetic evidence for the roles of COBRA-like genes in cellulose biosynthesis in grasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available