4.8 Article

Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs

Journal

ACTA BIOMATERIALIA
Volume 30, Issue -, Pages 397-407

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.10.041

Keywords

Selenium nanoparticles; Quercetin; Acetylcholine; Antimicrobial agents; Superbugs

Funding

  1. National Natural Science Foundation of China [21171070, 21371075]
  2. Natural Science Foundation of Guangdong Province [2014A030311025]
  3. Chinese Postdoctoral Science Foundation

Ask authors/readers for more resources

Developing highly effective antibacterial agents is important for a wide range of applications. However, the emergence of multiple antibiotic-resistant bacteria poses a public health threat. Many developed agents have limited practical application due to chemical instability, low biocompatibility, and poor long-term antibacterial efficiency. In the following study, we synthesize a synergistic nanocomposite by conjugating quercetin (Qu) and acetylcholine (Ach) to the surface of Se nanoparticles (Qu-Ach@SeNPs). Quercetin has been reported to exhibit a wide range of biological activities related to their antibacterial activity and acetylcholine as a neurotransmitter, which can combine with the receptor on the bacterial cell. Arrows indicate NPs and arrowheads indicate compromised cell walls. The study demonstrated how Qu-Ach@SeNPs exhibit a synergistically enhanced antibacterial performance against the multidrug-resistant superbugs (MDRs) compared to Qu@SeNPs and Ach@SeNPs alone. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant Staphylococcus aureus (MRSA), at a low dose. The mechanistic studies showed that Qu-Ach@SeNPs attach to the bacterial cell wall, causing irreversible damage to the membrane, and thereby achieving a remarkable synergistic antibacterial effect to inhibit MRSA. The findings suggested that the synergistic properties of quercetin and acetylcholine enhance the antibacterial activity of SeNPs. In this way, Qu-Ach@SeNPs comprise a new class of inorganic nano-antibacterial agents that can be used as useful applications in biomedical devices. Statement of significance The Qu-Ach@SeNPs have low cytotoxicity when tested on normal human cells in vitro. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant S. aureus (MRSA), at a low dose. Importantly, Qu-Ach@SeNPs showed no emergence of resistance. These results suggest that Qu-Ach@SeNPs have excellent antibacterial activities. These agents can serve as good antibacterial agents against superbugs. Our data suggest that these antibacterial agents may have widespread application in the field of medicine for combating infectious diseases caused by MDRs, as well as other infectious diseases. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available