4.8 Article

Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid

Journal

ACTA BIOMATERIALIA
Volume 42, Issue -, Pages 429-439

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2016.07.008

Keywords

TMZF; Ti64; Corrosion-wear; Hip-implant; Simulated body fluid

Funding

  1. Monash University in the form of Faculty of Engineering (FEIPRS)
  2. Departmental (DGS) PhD scholarships

Ask authors/readers for more resources

Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, alpha + beta titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (similar to 110 GPa) leads to an undesirable stress shielding effect. An alternative is to use beta titanium alloys that exhibit a significantly lower Young's modulus (similar to 70 GPa). Femoral stems made of a 0 titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. Statement of Significance TMZF is a low modulus beta-Ti alloy that has been used as the femoral stem in the Stryker modular design total hip replacement. It went into service in the early 2000's but was recalled by the FDA in 2011 due to unacceptable levels of wear debris released in the body which led to adverse physiological reactions. A large number of these implants remain in patients today. In this contribution, we investigate the corrosion (interaction of the alloy with simulated body fluid (SBF)), dry wear and then corrosion-wear in SBF to identify the origin of the unacceptable levels of wear that led to the FDA recall of this material. We use Ti-6Al-4V as a control and demonstrate that the reaction between Ti64 and TMZF with SBF is very similar in terms of both products formed and kinetics. We also show that the dry wear behaviour of TMZF is very similar to that of Ti64 and exactly as should be expected for the hardness of this material. However, the wear behaviours of TMZF and Ti64 are completed different in SBF and wear of TMZF is significantly accelerated in SBF. A type of time-dependent wear test is used to demonstrate the synergy between corrosion and wear and the key role of the strain hardening capacity (or lack thereof in the case of beta-Ti) is discussed. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available