4.6 Article

Square wave excitability in quantum dot lasers under optical injection

Journal

OPTICS LETTERS
Volume 44, Issue 2, Pages 347-350

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.44.000347

Keywords

-

Categories

Ask authors/readers for more resources

Quantum dot lasers display many unique dynamic phenomena when optically injected. Bistability has been predicted in a region of high injection strength. Experimentally, we show that a square wave phenomenon, rather than a phase-locked bistability, is observed in this region. The squares can manifest as a periodic train but also as noise-driven Type II excitable events. We interpret the appearance of the square waves as a thermally induced breaking of the bistability. Indeed, we find experimentally that over the duration of a square, the relative detuning between the master and the slave evolves deterministically. A relatively simple, physically motivated, rate equation model is presented and displays excellent agreement with the experiment. (C) 2019 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available