4.6 Article

Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam

Journal

OPTICS LETTERS
Volume 44, Issue 1, Pages 53-56

Publisher

Optica Publishing Group
DOI: 10.1364/OL.44.000053

Keywords

-

Categories

Funding

  1. National Key Technologies R&D Program of China [2016YFC0800502]
  2. National Natural Science Foundation of China (NSFC) [61875083, 61535005]

Ask authors/readers for more resources

We report an integrated optofluidic micro-pump with a pair of mirrored stirrers of circulating micro-beads in a micro-channel, driven by plasmon-assisted optical manipulation with the excitation of a polarization rotating beam. H-shaped apertures (HSAs) on a gold surface produce strong near-field hot spots when they are illuminated with a light beam polarized parallel to the long axis of H. With the rotating of excitation polarization, loops of HSAs with gradually varied orientations can produce the circulation of hot spots, which can further trap micro-beads and make them go around in circles. A different sequence of HSAs can produce a different direction and phase of bead rotation, even under uniform excitation. A pair of mirrored circulations of micro-beads in a micro-channel can induce very effective directional flow. Through numerical modeling, we find that a group of non-synchronized multi-phase mirrored circulations can produce a very uniform flow rate with a speed of more than 10 micrometers per second. These micro-pumps can be heavily integrated and activated by a single beam, while the flow direction of each pump can be regulated, even under a uniform excitation. Our design proposes a new approach for the flow pumping in micro- and nanofluidic devices. (C) 2018 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available