4.6 Article

Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations

Journal

OPTICS EXPRESS
Volume 26, Issue 21, Pages 27668-27682

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.26.027668

Keywords

-

Categories

Funding

  1. David and Lucille Packard Foundation [2010-35954]
  2. National Science Foundation Faculty Early Career Development Program (NSF-CAREER) [CHE-0953441]
  3. Institute for Collaborative Biotechnologies High Performance Computing cluster (U.S. Army Research Office) [W911NF-09-0001]
  4. Dow Foundation

Ask authors/readers for more resources

Plasmon resonances and electric field enhancements of several near-field optical antennae with plasmonic nanostructures engineered at their apices were quantitatively compared using finite difference time domain simulations. Although many probe designs have been tested experimentally, a systematic comparison of field enhancements has not been possible, due to differences in instrument configuration, reporter mechanism, excitation energy, and plasmonic materials used. For plasmonic nanostructures attached to a non-plasmonic support (e.g., a nanoparticle functionalized AFM tip), we find that the complex refractive index of the support material is critical in controlling the overall plasmonic behavior of the antenna. Supports with strong absorption at optical energies (Pt, W) dampen plasmon resonances and lead to lower enhancements, while those with low absorption (SiO2, Si3N4, Si) boost enhancement by increasing the extinction cross-section of the apex nanostructure. Using a set of physically realistic constraints, probes were optimized for peak plasmonic enhancement at common near-field optical wavelengths (633-647 nm) and those with focused ion-beam milled grooves near the apex were found to give the largest local field enhancements (similar to 30x). Compared to unstructured metal cones, grooved probes gave a 300% improvement in field strength, which can boost tip-enhanced Raman spectroscopy (TERS) signals by 1-2 orders of magnitude. Moreover, grooved probe resonances can be easily tuned over visible and near-infrared energies by varying the plasmonic metal (Ag or Au) and groove location. Overall, this work shows that probes with strong localized surface plasmon resonances at their apices can be engineered to provide large field enhancements and boost signals in near-field optical experiments. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available