4.6 Article

Conversion from terahertz-guided waves to surface waves with metasurface

Journal

OPTICS EXPRESS
Volume 26, Issue 24, Pages 31233-31243

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.26.031233

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [61378018, 11574158]
  2. Fundamental Research Funds for the Central Universities
  3. 111 Project [B07013]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT 13R29]

Ask authors/readers for more resources

Surface waves (SWs) have attracted a widespread attention due to the characteristic of subwavelength confinement and convenient manipulation in photonic integrated circuits. Though metasurface provides a powerful tool in realizing the conversion between freely propagating waves and surface modes in recent years, a gulf between guided waves (GWs) and SWs in terahertz (THz) range still exists as a bottleneck for on-chip photonic integrated devices. Here, we implemented the conversion from THz GWs to SWs through the coupling of a lithium niobate (LN) subwavelength waveguide and metasurface antennas on an all-feature on-chip THz integrated platform. The conversion process and transmission mode of the THz waves were directly visualized via a time-resolved imaging system. Based on the dynamic process, the formation of SWs could be clarified through analyzing the dispersion relation of propagating modes, which is in good agreement with numerical models. In further, relying on the numerical simulation, SWs were induced from the collective oscillations of the metasurface antenna array and the maximum coupling efficiency was around 62.6 percent. Our work provides an efficient approach to control of GWs, and promotes the practicability of THz surface integrated devices, including THz surface spectroscopy sensing. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available