4.7 Article

Biosensing with nanoaperture optical tweezers

Journal

OPTICS AND LASER TECHNOLOGY
Volume 109, Issue -, Pages 328-335

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2018.07.019

Keywords

Optical tweezers; Biosensing; Nanoapertures; Proteins; Protein interactions; DNA

Funding

  1. NSERC Discovery Grant

Ask authors/readers for more resources

Nanoaperture optical tweezers extend the range of optical tweezers to dielectric particles below 50 nm in size. This allows for optical trapping of proteins, DNA fragments and other biomolecules, as well as small viruses. With this label-free, tether-free approach proteins have been trapped, sized and their conformational changes observed in real-time. The molecular weight of proteins in the nanoaperture trap was determined from their Brownian motion statistics. This is useful for analysis of heterogeneous solutions: since this is a single molecule technique, it can be operated in dirty solutions with minimal sample preparation. The acoustic modes of proteins, DNA fragments and other trapped nanoparticles can be measured using a nanoaperture optical tweezer with two lasers creating a GHz to THz beat frequency. Interactions between proteins and DNA, small molecules (i.e., binding) and other proteins have also been demonstrated. This single molecule technique allows for measuring the dissociation constants of small molecules binding to proteins, both at equilibrium and at the single molecule level. For DNA fragments in the trap, it has been shown that the protein p53 can suppress unzipping and mutant p53 is ineffective to do so. This is promising for the discovery of drugs that effectively restore the function to p53. Integration of nanoapertures on the ends of fibers allows for translocation of the trapped object and may function as an optical nanopipette for microwell single molecule protein sampling. There is also potential to combine nanoapertures with nanopore translocation studies as well as fluorescence correlation microscopy studies and several researchers are already pursuing these areas of research. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available