4.6 Review

Community Response to Extreme Drought (CRED): a framework for drought-induced shifts in plant-plant interactions

Journal

NEW PHYTOLOGIST
Volume 222, Issue 1, Pages 52-69

Publisher

WILEY
DOI: 10.1111/nph.15595

Keywords

competition; drought; facilitation; plant community; recovery; resilience; resistance; stress gradient hypothesis (SGH)

Categories

Funding

  1. NSF RCN grant [1354732]

Ask authors/readers for more resources

As climate changes, many regions of the world are projected to experience more intense droughts, which can drive changes in plant community composition through a variety of mechanisms. During drought, community composition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED), which organizes the temporal progression of mechanisms and plant-plant interactions that may lead to community changes during and after a drought. The CRED framework applies some principles of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changes with increasing stress. The CRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (-) interactions between plants, will change temporally, becoming more positive under increasing drought stress and more negative as drought stress decreases. Furthermore, we suggest that rewetting rates affect the rate of resource amelioration, specifically water and nitrogen, altering productivity responses and the intensity and importance of NBI, all of which will influence drought-induced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system's resistance and resilience to drought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available