4.4 Article

Soluble epoxide hydrolase inhibitor, APAU, protects dopaminergic neurons against rotenone induced neurotoxicity: Implications for Parkinson's disease

Journal

NEUROTOXICOLOGY
Volume 70, Issue -, Pages 135-145

Publisher

ELSEVIER
DOI: 10.1016/j.neuro.2018.11.010

Keywords

Parkinson; Soluble epoxide hydrolase; Epoxyeicosatrienoic acids; Neuroprotection; Oxidative stress; Inflammation; Apoptosis; APAU

Funding

  1. National Institute of Environmental Health Sciences (NIEHS), United States [ES002710]

Ask authors/readers for more resources

Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, play a crucial role in cytoprotection by attenuating oxidative stress, inflammation and apoptosis. EETs are rapidly metabolised in vivo by the soluble epoxide hydrolase (sEH). Increasing the half life of EETs by inhibiting the sEH enzyme is a novel strategy for neuroprotection. In the present study, sEH inhibitors APAU was screened in silica and further evaluated for their antiparkinson activity against rotenone (ROT) induced neurodegeneration in N27 dopaminergic cell line and Drosophila melanogaster model of Parkinson disease (PD). In the in vitro study cell viability (MTT and LDH release assay), oxidative stress parameters (total intracellular ROS, hydroperoxides, protein oxidation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, glutathione, total antioxidant status, mitochondrial complex-1 activity and mitochondrial membrane potential), inflammatory markers (IL-6, COX-1 and COX-2), and apoptotic markers (JNK, phospho-JNK, c-jun, phospho-c-jun, pro and active caspase-3) were assessed to study the neuroprotective effects. In vivo activity of APAU was assessed in Drosophila melanogaster by measuring survival rate, negative geotaxis, oxidative stress parameters (total intracellular ROS, hydroperoxides, glutathione levels) were measured. Dopamine and its metabolites were estimated by LC-MS/MS analysis. In the in silica study the molecule, APAU showed good binding interaction at the active site of sEH (PDB: 1VJ5). In the in vitro study, APAU significantly attenuated ROT induced changes in oxidative, pro-inflammatory and apoptotic parameters. In the in vivo study, APAU significantly attenuates ROT induced changes in survival rate, negative geotaxis, oxidative stress, dopamine and its metabolites levels (p < 0.05). Our study, therefore, concludes that the molecule APAU, has significant neuroprotection benefits against rotenone induced Parkinsonism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available