4.5 Article

Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning

Journal

NEUROSURGICAL FOCUS
Volume 45, Issue 5, Pages -

Publisher

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2018.8.FOCUS18332

Keywords

intracranial aneurysm; flow diverter; machine learning; computational fluid dynamics; Pipeline embolization device; predictive models

Funding

  1. National Institutes of Health [R01-NS-091075]
  2. Canon Medical System Corporation
  3. Brain Aneurysm Foundation (Carol W. Harvey Chair of Research Grant)
  4. National Center for Advancing Translational Sciences of the National Institutes of Health [KL2TR001413]
  5. Brain Aneurysm Foundation (Dawn Brejcha Chair of Research Grant)
  6. Brain Aneurysm Foundation (Robert Southerland Chair of Research Grant)

Ask authors/readers for more resources

OBJECTIVE Flow diverters (FDs) are designed to occlude intracranial aneurysms (lAs) while preserving flow to essential arteries. Incomplete occlusion exposes patients to risks of thromboembolic complications and rupture. A priori assessment of FD treatment outcome could enable treatment optimization leading to better outcomes. To that end, the authors applied image-based computational analysis to clinically FD-treated aneurysms to extract information regarding morphology, pre- and post-treatment hemodynamics, and FD-device characteristics and then used these parameters to train machine learning algorithms to predict 6-month clinical outcomes after FD treatment. METHODS Data were retrospectively collected for 84 FD-treated sidewall aneurysms in 80 patients. Based on 6-month angiographic outcomes, IAs were classified as occluded (n = 63) or residual (incomplete occlusion, n = 21). For each case, the authors modeled FD deployment using a fast virtual stenting algorithm and hemodynamics using image-based computational fluid dynamics. Sixteen morphological, hemodynamic, and FD-based parameters were calculated for each aneurysm. Aneurysms were randomly assigned to a training or testing cohort in approximately a 3:1 ratio. The Student t-test and Mann-Whitney U-test were performed on data from the training cohort to identify significant parameters distinguishing the occluded from residual groups. Predictive models were trained using 4 types of supervised machine learning algorithms: logistic regression (LR), support vector machine (SVM; linear and Gaussian kernels), K-nearest neighbor, and neural network (NN). In the testing cohort, the authors compared outcome prediction by each model trained using all parameters versus only the significant parameters. RESULTS The training cohort (n = 64) consisted of 48 occluded and 16 residual aneurysms and the testing cohort (n = 20) consisted of 15 occluded and 5 residual aneurysms. Significance tests yielded 2 morphological (ostium ratio and neck ratio) and 3 hemodynamic (pre-treatment inflow rate, post-treatment inflow rate, and post-treatment aneurysm averaged velocity) discriminants between the occluded (good-outcome) and the residual (bad-outcome) group. In both training and testing, all the models trained using all 16 parameters performed better than all the models trained using only the 5 significant parameters. Among the all-parameter models, NN (AUC = 0.967) performed the best during training, followed by LR and linear SVM (AUC = 0.941 and 0.914, respectively). During testing, NN and Gaussian-SVM models had the highest accuracy (90%) in predicting occlusion outcome. CONCLUSIONS NN and Gaussian-SVM models incorporating all 16 morphological, hemodynamic, and FD-related parameters predicted 6-month occlusion outcome of FD treatment with 90% accuracy. More robust models using the computational workflow and machine learning could be trained on larger patient databases toward clinical use in patient-specific treatment planning and optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available