4.8 Article

Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes

Journal

ACS NANO
Volume 10, Issue 10, Pages 9738-9744

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05998

Keywords

potassium ion battery; in situ Raman spectroscopy; nitrogen doping; graphite intercalation compounds; anode

Funding

  1. NSF [CMMI 1400424]
  2. National Science Foundation [1445197]
  3. Division Of Graduate Education
  4. Direct For Education and Human Resources [1445197] Funding Source: National Science Foundation

Ask authors/readers for more resources

Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to spa carbon defect sites to achieve the improved performance, which also enables >6X increase in rate performance of doped vs undoped materials. Finally, in situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available