4.3 Article

Burst SCS Microdosing Is as Efficacious as Standard Burst SCS in Treating Chronic Back and Leg Pain: Results From a Randomized Controlled Trial

Journal

NEUROMODULATION
Volume 22, Issue 2, Pages 190-193

Publisher

WILEY
DOI: 10.1111/ner.12883

Keywords

Back and leg pain; battery use; burst; BurstDR; energy consumption; neuropathic pain; SCS; spinal cord stimulation

Ask authors/readers for more resources

Introduction The burst waveform, a recent innovation in spinal cord stimulation (SCS), can achieve better outcomes than conventional tonic SCS, both for de novo implants and as a salvage therapy. Burst stimulation delivers more energy per second than tonic stimulation, which is a consideration for battery consumption. The clinical effectiveness of an energy-conserving strategy was investigated. Methods Subjects were experienced users of BurstDR SCS for back and leg pain. Three 2-week stimulation paradigms were presented in blinded random order: standard (continuously delivered) BurstDR, microdosing A: 5 sec of BurstDR alternating with 5 sec of no stimulation, and microdosing B: 5 sec of BurstDR alternating with 10 sec of no stimulation. The primary outcome for each paradigm was change in pain ratings, and secondary outcomes included changes in scores for quality of life, satisfaction, and preference. Results Twenty-five subjects assessed all three stimulation paradigms. There were no significant differences in pain (visual analog scale) or quality of life (EQ-5D) when comparing standard burst outcomes with those of microdosing A and, separately, microdosing B. Microdosing paradigms were graded with slightly higher level of satisfaction and were generally preferred above standard burst stimulation. Discussion These results suggest that the use of energy-efficient burst microdosing stimulation paradigms with alternating stimulation-on and stimulation-off periods can provide clinically equivalent results to standard burst stimulation. This is important for extending SCS battery life. Further research is needed to comprehensively characterize the clinical utility of this approach and the neurophysiological mechanisms for the maintenance of pain relief during stimulation-off periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available