4.8 Article

Selectively Sensitizing Malignant Cells to Photothermal Therapy Using a CD44-Targeting Heat Shock Protein 72 Depletion Nanosystem

Journal

ACS NANO
Volume 10, Issue 9, Pages 8578-8590

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b03874

Keywords

photothermal therapy; triple negative breast cancer; gene therapy; heat shock protein; thermotolerance

Funding

  1. National Key Basic Research Program of the P.R. China [2014CB744504]
  2. National Natural Science Foundation of China [81501588]
  3. Natural Science Foundation of Jiangsu Province [BK20140734]

Ask authors/readers for more resources

Selectively enhance the therapeutic efficacy to malignancy is one of the most important issues for photothermal therapy (PTT). However, most solid tumors, such as triple negative breast cancer (TNBC), do not have identifiable surface markers to distinguish themselves from normal cells, thus it is challenging to selectively identify and eliminate those malignances by PTT. In this report, we hypothesized that, by targeting CD44 (one TNBC-overexpressed surface molecule) and depleting heat shock protein 72 (HSP72, one malignancy-specific-overexpressed thermotolerance-related chaperone) subsequently, the TNBC could be selectively sensitized to PTT and improve the accuracy of treatment. To this end, a rationally designed nanosystem gold nanostar (GNS)/siRNA against HSP72 (siHSP72)/hyaluronic acid (HA) was successfully constructed using a layer-by-layer method. Hydrodynamic diameter and zeta potential analysis demonstrated the formation of GNS/siHSP72/HA having a particle size of 73.2 +/- 3.8 nm and a negative surface charge of 18.3 +/- 1.6 mV. The CD44-targeting ability of GNS/siHSP72/HA was confirmed by the flow cytometer, confocal microscopic imaging, and competitive binding analysis. The HSP72 silencing efficacy of GNS/siHSP72/HA was similar to 95% in complete culture medium. By targeting CD44 and depleting HSP72 sequentially, GNS/siHSP72/HA could selectively sensitize TNBC cells to hyperthermia and enhance the therapeutic efficacy to TNBC with minimal side effect both in vitro and in vivo. Other advantages of GNS/siHSP72/HA included easy synthesis, robust siRNA loading capacity, endosome/lysosome escaping ability, high photothermal conversion efficacy and superior hemo- and biocompatibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available