4.6 Article

Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 32, Issue 15, Pages 11137-11161

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-018-03980-2

Keywords

ECG; Biomedical signal processing and analysis; Machine learning; Genetic algorithms; Ensemble learning; Deep learning

Ask authors/readers for more resources

The heart disease is one of the most serious health problems in today's world. Over 50 million persons have cardiovascular diseases around the world. Our proposed work based on 744 segments of ECG signal is obtained from the MIT-BIH Arrhythmia database (strongly imbalanced data) for one lead (modified lead II), from 29 people. In this work, we have used long-duration (10 s) ECG signal segments (13 times less classifications/analysis). The spectral power density was estimated based on Welch's method and discrete Fourier transform to strengthen the characteristic ECG signal features. Our main contribution is the design of a novel three-layer (48 + 4 + 1) deep genetic ensemble of classifiers (DGEC). Developed method is a hybrid which combines the advantages of: (1) ensemble learning, (2) deep learning, and (3) evolutionary computation. Novel system was developed by the fusion of three normalization types, four Hamming window widths, four classifiers types, stratified tenfold cross-validation, genetic feature (frequency components) selection, layered learning, genetic optimization of classifiers parameters, and new genetic layered training (expert votes selection) to connect classifiers. The developed DGEC system achieved a recognition sensitivity of 94.62% (40 errors/744 classifications), accuracy = 99.37%, specificity = 99.66% with classification time of single sample = 0.8736 (s) in detecting 17 arrhythmia ECG classes. The proposed model can be applied in cloud computing or implemented in mobile devices to evaluate the cardiac health immediately with highest precision.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available