4.6 Article

Whale swarm algorithm with the mechanism of identifying and escaping from extreme points for multimodal function optimization

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 32, Issue 9, Pages 5071-5091

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-018-3949-4

Keywords

Whale swarm algorithm; Multimodal optimization; Metaheuristic algorithm; Niching; Extreme point

Ask authors/readers for more resources

Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal optimization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the niching parameter values for different optimization problems and how to jump out of the local optima efficiently. These two difficulties limit their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. On the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. On the other hand, WSA-IC enables the identification of extreme points during the iterations relying on two new parameters (i.e., stability threshold Tsand fitness threshold Tf to jump out of the located extreme points. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and on five additional high-dimensional multimodal functions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available