4.8 Article

Superhydrophobic Cones for Continuous Collection and Directional Transportation of CO2 Microbubbles in CO2 Supersaturated Solutions

Journal

ACS NANO
Volume 10, Issue 12, Pages 10887-10893

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05371

Keywords

superhydrophobic cone; microbubble; continuous collection; directional transportation; gradient of Laplace pressure

Funding

  1. National Research Fund for Fundamental Key Projects [2013CB933000]
  2. Beijing National Science Foundation [2152018]
  3. Beijing Higher Education Young Elite Teacher Project
  4. 111 Project [B14009]

Ask authors/readers for more resources

Microbubbles are tiny bubbles with diameters below 50 mu m. Because of their minute buoyant force, the microbubbles stagnate in aqueous media for a long time, and they sometimes cause serious damage. Most traditional methods chosen for elimination of gas bubbles utilize buoyancy forces including chemical methods and physical methods, and they only have a minor effect on microbubbles. Several approaches have been developed to collect and transport microbubbles in aqueous media. However, the realization of innovative strategies to directly collect and transport microbubbles in aqueous media remains a big challenge. In nature, both spider silk and cactus spines take advantage of their conical-shaped surface to yield the gradient of Laplace pressure and surface free energy for collecting fog droplets from the environment. Inspired by this, we introduce here the gradient of Laplace pressure and surface free energy to the interface of superhydrophobic copper cones (SCCs), which can continuously collect and directionally transport CO2 microbubbles (from tip side to base side) in CO2-supersaturated solution. A gas layer was formed when the microbubbles encounter the SCCs. This offers a channel for microbubble directional transportation. The efficiency of microbubble transport is significantly affected by the apex angle of SCCs and the carbon dioxide concentration. The former provides different gradients of Laplace pressure as the driving force. The latter represents the capacity, which offers the quantity of CO2 microbubbles for collection and transportation. We believe that this approach provides a simple and valid way to remove microbubbles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available