4.8 Article

Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy

Journal

ACS NANO
Volume 10, Issue 11, Pages 10245-10257

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05760

Keywords

biomimetic mineralization; CuS; photothermal therapy; photoacoustic; MR imaging

Funding

  1. National Natural Science Foundation of China [81571742, 81371618, 51373117, 51573128, 81601603]
  2. Shanghai Innovation Program [14ZZ039]
  3. Key Project of Tianjin Natural Science Foundation [13JCZDJC33200]
  4. National High Technology Program of China [2012AA022603]
  5. Doctoral Base Foundation of Educational Ministry of China [20120032110027]
  6. Program for Outstanding Young Teachers in Tongji University
  7. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Photothermal therapy (PTT) is attracting increasing interest and becoming more widely used for skin cancer therapy in the clinic, as a result of its noninvasiveness and low systemic adverse effects. However, there is an urgent need to develop biocompatible PTT agents, which enable accurate imaging, monitoring, and diagnosis. Herein, a biocompatible Gd-integrated CuS nanotheranostic agent (Gd:CuS@BSA) was synthesized via a facile and environmentally friendly biomimetic strategy, using bovine serum albumin (BSA) as a biotemplate at physiological temperature. The as-prepared Gd:CuS@BSA nanoparticles (NPs) with ultrasmall sizes (ca. 9 nm) exhibited high photothermal conversion efficiency and good photo stability under near-infrared (NIR) laser irradiation. With doped Gd species and strong tunable MR absorbance, Gd:CuS@BSA NPs demonstrate prominent tumor-contrasted imaging performance both on the photoacoustic and magnetic resonance imaging modalities. The subsequent Gd:CuS@BSA-mediated PTT result shows high therapy efficacy as a result of their potent NIR absorption and high photothermal conversion efficiency. The immune response triggered by Gd:CuS@BSA-mediated PTT is preliminarily explored. In addition, toxicity studies in vitro and in vivo verify that Gd:CuS@BSA NPs qualify as biocompatible agents. A biodistribution study demonstrated that the NPs can undergo hepatic clearance from the body. This study highlights the practicality and versatility of albumin-mediated biomimetic mineralization of a nanotheranostic agent and also suggests that bioinspired Gd:CuS@BSA NPs possess promising imaging guidance and effective tumor ablation properties, with high spatial resolution and deep tissue penetration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available