4.8 Article

Sub-hertz fundamental linewidth photonic integrated Brillouin laser

Journal

NATURE PHOTONICS
Volume 13, Issue 1, Pages 60-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41566-018-0313-2

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency (DARPA)
  2. Space and Naval Warfare Systems Center Pacific (SSC Pacific) [N66001-16-C-4017]

Ask authors/readers for more resources

Spectrally pure lasers, the heart of precision high-end scientific and commercial applications, are poised to make the leap from the laboratory to integrated circuits. Translating this performance to integrated photonics will dramatically reduce cost and footprint for applications such as ultrahigh capacity fibre and data centre networks, atomic clocks and sensing. Despite the numerous applications, integrated lasers currently suffer from large linewidth. Brillouin lasers, with their unique properties, offer an intriguing solution, yet bringing their performance to integrated platforms has remained elusive. Here, we demonstrate a sub-hertz (similar to 0.7 Hz) fundamental linewidth Brillouin laser in an integrated Si3N4 waveguide platform that translates advantages of non-integrated designs to the chip scale. This silicon-foundry-compatible design supports low loss from 405 to 2,350 nm and can be integrated with other components. Single- and multiple-frequency output operation provides a versatile low phase-noise solution. We highlight this by demonstrating an optical gyroscope and a low-phase-noise photonic oscillator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available