4.8 Article

Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams

Journal

NATURE MATERIALS
Volume 18, Issue 2, Pages 121-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41563-018-0242-y

Keywords

-

Funding

  1. ACCEL programme
  2. Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  3. New Energy and Industrial Technology Development Organization (NEDO)

Ask authors/readers for more resources

Achieving high brightness (where brightness is defined as optical power per unit area per unit solid angle) in semiconductor lasers is important for various applications, including direct-laser processing and light detection and ranging for next-generation smart production and mobility. Although the brightness of semiconductor lasers has been increased by the use of edge-emitting-type resonators, their brightness is still one order of magnitude smaller than that of gas and solid-state/fibre lasers, and they often suffer from large beam divergence with strong asymmetry and astigmatism. Here, we develop a so-called 'double-lattice photonic crystal', where we superimpose two photonic lattice groups separated by one-quarter wavelength in the x and y directions. Using this resonator, an output power of 10 W with a very narrow-divergence-angle (< 0.3 degrees) symmetric surface-emitted beam is achieved from a circular emission area of 500 mu m diameter under pulsed conditions, which corresponds to a brightness of over 300 MW cm(-2) sr(-1). In addition, an output power up to similar to 7 W is obtained under continuous-wave conditions. Detailed analyses on the double-lattice structure indicate that the resonators have the potential to realize a brightness of up to 10 GW cm(-2) sr(-1), suggesting that compact, affordable semiconductor lasers will be able to rival existing gas and fibre/disk lasers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available