4.8 Article

Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism

Journal

ACS NANO
Volume 10, Issue 9, Pages 8788-8795

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b04519

Keywords

in situ transmission electron microscopy; sodium-ion battery; selenium cathodes; lithium-ion battery; alloying reaction; in situ electron diffraction; DFT calculation

Ask authors/readers for more resources

There are economic and environmental advantages by replacing Li with Na in energy storage. However, sluggishness in the charge/discharge reaction and low capacity are among the major obstacles to development of high-power sodium-ion batteries. Among the electrode materials recently developed for sodium-ion batteries, selenium shows considerable promise because of its high capacity and good cycling ability. Herein, we have investigated the mechanism and kinetics of both sodiation and lithiation reactions with selenium nanotubes, using in situ transmission electron microscopy. Sodiation of a selenium nanotube exhibits a three-step reaction mechanism: (1) the selenium single crystal transforms into an amorphous phase Na0.5Se; (2) the Na0.5Se amorphous phase crystallizes to form a polycrystalline Na2Se2 phase; and (3) Na2Se2 transforms into the Na2Se phase. Under similar conditions, the lithiation of Se exhibits a one-step reaction mechanism, with phase transformation from single-crystalline Se to a Li2Se. Intriguingly, sodiation kinetics is generally about 4-5 times faster than that of lithiation, and the kinetics during the different stages of sodiation is different. Na-based intermediate phases are found to have improved electronic and ionic conductivity compared to those of Li compounds by first-principles density functional theory calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available